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Abstract
We present a new class of flat-band Hubbard models which have saturated
ferromagnetic ground states at two distinct electron numbers for different values
of parameters. The models are extensions of Tasaki’s flat-band models.

PACS numbers: 71.10.Fd, 05.50.+q

1. Introduction

It is widely believed that the spin-independent Coulomb interaction and the Pauli exclusion
principle can generate ferromagnetism in itinerant electron systems. One of the motivations
to study the Hubbard model has been to establish and understand the generation of
ferromagnetism in simplified situations taking account of these effects [1]. Mielke [2] and
Tasaki [3], independently, presented Hubbard models which exhibit saturated ferromagnetism
for certain electron numbers when the Coulomb interaction U is positive. These models
have a common feature that the single-electron spectra contain dispersionless bands and
are called flat-band models. In [4, 5], Tasaki also discovered Hubbard models exhibiting
ferromagnetism which are non-singular in the sense that both the density of states and the
Coulomb interaction are finite. Recently Tanaka and Ueda succeeded in proving the existence
of saturated ferromagnetism in a Hubbard model obtained by adding extra hopping terms to
Mielke’s flat-band model on the kagomé lattice [6].

Although the flat-band Hubbard models are singular and not physically realistic, their
study can be a basis of more realistic results about ferromagnetism. It is therefore important
to find out which flat-band models exhibit ferromagnetism. Although an abstract criterion
was presented by Mielke [7], we still do not know precise class of models which satisfy the
criterion.

In this paper, we follow Tasaki’s construction of flat-band models and construct a new
class of Hubbard models in arbitrary dimensions with finite U and finite-range hopping. We
prove that the models exhibit ferromagnetism in their ground states at two distinct electron
numbers. The difference between Tasaki’s original model and ours can easily be seen from
figure 1 where the simplest one-dimensional versions of the models are illustrated. Tasaki’s
model has one ‘internal site’ (grey dot in the figure) in each unit cell, while ours has two.
This difference in lattice structure makes our model have different ‘exchange mechanism’
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(a) (b)

Figure 1. The lattice structure and the hopping amplitude in the one-dimensional flat band models
of (a) Tasaki’s and (b) ours. The black dots are the external sites (in E) and the grey dots are the
internal sites (in I). Tasaki’s model has one internal cite in each cell while ours has two.

where a single-electron state localized at each pair of internal sites plays an important role (see
section 4 for more details).

We have thus found that an extension of Tasaki’s construction leads to a new class of
models exhibiting ferromagnetism. We hope this study will shed light on the general structure
of flat-band ferromagnetism.

2. The model and main results

2.1. Construction of the lattice

In the original flat-band models by Tasaki [3], the basic cell in the lattice � consists of a single
internal site and some external sites. In our new models, the basic cell consists of two internal
sites and some external sites. More precisely we let the basic cell be

C = {u, v, x1, x2, . . . , xn}. (2.1)

We call u and v the internal sites of C and x1, x2, . . . , xn the external sites.
To form the lattice �, we assemble M identical copies C1, C2, . . . , CM of the basic cell

C and identify external sites from m distinct cells and regard them as a single site. In other
words, an external site in � is shared by m distinct cells. We denote by |�| the number of
sites in � (see figure 2 for an example of a cell and a resulting lattice).

The lattice is naturally decomposed as

� = I ∪ E (2.2)

where I and E are the sets of internal sites and external sites, respectively. We also denote
by J the assembly {1, 2, . . . , M} of the indices of cells. From the above construction, we see
that the number of sites in these sublattices is |I| = 2M, |E| = nM/m. By using |�|, we can
write |I| = 2m|�|/(2m + n), |E| = n|�|/(2m + n) and |J | = m|�|/(2m + n).

In what follows we always regard Cj as a subset of �. We denote the two internal sites in
Cj as uj and vj . For an external site x ∈ E , we denote by Jx the collection of indices j such
that x ∈ Cj . We also define �x ⊂ � to be the union of m cells which contain the site x.

2.2. Fermion operators

We consider an electron system on the lattice �. For each site r ∈ � and σ = ↑,↓, we define
the creation and the annihilation operators c

†
r,σ and cr,σ for an electron at site r with spin σ .

These operators satisfy the canonical anticommutation relations{
c†r,σ , cs,τ

} = δr,sδσ,τ (2.3)

and {
c†r,σ , c†s,τ

} = {cr,σ , cs,τ } = 0 (2.4)
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(a) (b)

Figure 2. An example of a cell and a lattice. From the quadrangular cell with four sites (a), one
can form (b) a decorated square lattice by identifying four external sites. This defines flat-band
Hubbard model in two dimensions (for a precise definition see (2.19) and (2.20) (where one should
set n = 2,m = 4)). When Ne = |�|/5, the model exhibits saturated ferromagnetism for any
t > 0, s′ > 0 and U > 0. The model also exhibits saturated ferromagnetism for any t > 0, U > 0
when Ne = 3|�|/5 and s′ = 0 (see theorems 2.1 and 2.2).

for any r, s ∈ � and σ, τ = ↑,↓, where {A,B} = AB + BA. We denote by �vac a normalized
vector state which satisfies cr,σ �vac = 0 for any r ∈ � and σ = ↑,↓. Then for arbitrary
subsets �↑,�↓ ⊂ �, we define a state

 ∏
r∈�↑

c
†
r,↑





 ∏

r∈�↓

c
†
r,↓


 �vac (2.5)

in which sites in �↑ are occupied by up-spin electrons and sites in �↓ are occupied by
down-spin electrons.

Next we define total spin operator Ŝtot = (
Ŝ

(1)
tot , Ŝ

(2)
tot , Ŝ

(3)
tot

)
by

Ŝ
(α)
tot = 1

2

∑
r∈�

σ,τ=↑,↓

c†r,σ (p(α))σ,τ cr,τ (2.6)

for α = 1, 2 and 3. Here p(α) are the Pauli matrices defined by

p(1) =
(

0 1
1 0

)
p(2) =

(
0 −i
i 0

)
p(3) =

(
1 0
0 −1

)
. (2.7)

We finally define special fermion operators as in [3]. Let ν > 0 be a constant. For x ∈ E ,
let

ax,σ = cx,σ − ν

2

∑
j∈Jx

(cuj ,σ + cvj ,σ ) (2.8)

where the sum is over m sites adjacent to x. For j ∈ J , let

bj,σ = cuj ,σ + cvj ,σ + ν
∑

x∈Cj ∩E
cx,σ (2.9)

where the sum is over the n external sites in the cell Cj and

dj,σ = cuj ,σ − cvj ,σ . (2.10)

From the anticommutation relations for the basic c operators, one can easily verify that{
a†

x,σ , bj,τ

} = {
a†

x,σ , dj,τ

} = {
b
†
j,σ , dk,τ

} = 0 (2.11)

for any x ∈ E, j, k ∈ J and σ, τ =↑,↓.
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The anticommutation relations for the a operators are

{
a†

x,σ , ay,τ

} =




1 + mν2

2 if x = y, σ = τ

�x,yν
2

4 if x �= y, σ = τ

0 otherwise.

(2.12)

For x, y ∈ E , we defined

�x,y = |�x ∩ �y ∩ I| (2.13)

which is the number of the internal sites directly connected both to x and y. For the b operators,
we similarly have

{
b
†
j,σ , bk,τ

} =




2 + nν2 if j = k, σ = τ

�j,kν
2 if j �= k, σ = τ

0 otherwise.

(2.14)

For j, k ∈ J , we defined

�j,k = |Cj ∩ Ck ∩ E| (2.15)

which is the number of external sites which is included in both Cj and Ck . For the d operators,
we have

{
d
†
j,σ , dk,τ

} =
{

2 if j = k, σ = τ

0 otherwise.
(2.16)

Since the states a
†
x,σ �vac, b

†
j,σ �vac and d

†
j,σ �vac are linearly independent and the number

of these states is 2|�|, an arbitrary many-electron state of the system can be represented as a
linear combination of the basis states

	0(E↑, E↓, J↑, J↓, J ′
↑, J ′

↓) =

 ∏

x∈E↑

a
†
x,↑





 ∏

x∈E↓

a
†
x,↓





∏

j∈J↑

b
†
j,↑




×

∏

j∈J↓

b
†
j,↓





∏

j∈J ′
↑

d
†
j,↑





∏

j∈J ′
↓

d
†
j,↓


�vac (2.17)

with arbitrary subsets E↑, E↓ ⊂ E , J↑, J↓, J ′
↑, J ′

↓ ⊂ J . Here |E↑| + |E↓| + |J↑| + |J↓| + |J ′
↑| +

|J ′
↑| = Ne is the total electron number.

2.3. An extension of Tasaki’s flat-band model

We study a Hubbard model with the Hamiltonian

H = t

M∑
j=1

∑
σ=↑,↓

b
†
j,σ bj,σ + s ′

M∑
j=1

∑
σ=↑,↓

d
†
j,σ dj,σ + U

∑
r∈�

n
†
r,↑nr,↓ (2.18)

where t > 0, s ′ and U � 0 are real and nr,σ = c
†
r,σ cr,σ is the number operator. We can rewrite

the same Hamiltonian in the more standard form as

H =
∑
r,s∈�

σ=↑,↓

tr,sc
†
r,σ cs,σ + U

∑
r∈�

n
†
r,↑nr,↓ (2.19)
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where tr,s are the hopping amplitudes given by


tx,x = mtν2 x ∈ E
tui ,ui

= tvi ,vi
= t + s ′ i ∈ J

tui ,vi
= tvi ,ui

= t − s ′ i ∈ J

tx,ui
= tui ,x = tx,vi

= tvi ,x =
{
tν x ∈ Ci

0 x /∈ Ci

x ∈ E, i ∈ J

tx,y = �x,y tν
2 x, y ∈ E x �= y

tui ,uj
= tvi ,vj

= tui ,vj
= 0 i, j ∈ J i �= j.

(2.20)

From the anticommutation relations (2.11) and (2.16), one easily finds that the single-
electron Schrödinger equation corresponding to (2.18) has |E|-fold degenerate eigenstates
a
†
x,σ �vac with energy 0 and M-fold degenerate eigenstates d

†
j,σ�vac with energy 2s ′. It is also

easy to see that the remaining eigenvalues are positive. We have thus defined a new class of
flat-band Hubbard models. The models exhibit ferromagnetism as the following two theorems
state.

Theorem 2.1. Consider the above Hubbard model with Ne = |E| = n|�|/(2m+n) and s ′ > 0.
For any U > 0, the ground states have total spin Stot = Smax(=Ne/2) and are non-degenerate
apart from the trivial (2Smax + 1)-fold degeneracy.

Theorem 2.2. Consider the above Hubbard model with Ne = |E|+ |J | = (n+m)|�|/(2m+n)

and s ′ = 0. For any U > 0, the ground states have total spin Stot = Smax(=Ne/2) and are
non-degenerate apart from the trivial (2Smax + 1)-fold degeneracy.

It is remarkable that the new models show saturated ferromagnetism at two distinct
electron numbers for different values of the parameters. This is a unique property of our
models.

3. Proof

We define the states �1↑,�2↑ as

�1↑ =
(∏

x∈E
a
†
x,↑

)
�vac �2↑ =

(∏
x∈E

a
†
x,↑

) 
∏

j∈J
d
†
j,↑


 �vac. (3.1)

We decompose the Hamiltonian as H = Hhop + Hint where

Hhop = t

M∑
j=1

∑
σ=↑,↓

b
†
j,σ bj,σ + s ′

M∑
j=1

∑
σ=↑,↓

d
†
j,σ dj,σ (3.2)

Hint = U
∑
r∈�

n
†
r,↑nr,↓. (3.3)

Note that both Hhop and Hint are positive semidefinite.

3.1. Proof of theorem 2.1

We consider the case with Ne = |E| and s ′ > 0 and prove theorem 2.1. Since the proof is
essentially the same as that found in [1, 3], we shall provide a brief explanation here. Since
H � 0 and H	1↑ = 0, we see that an arbitrary ground state �GS satisfies

Hhop�GS = 0 Hint�GS = 0. (3.4)
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From the second relation in (3.4), we further find that �GS must satisfy

cr,↑cr,↓�GS = 0 (3.5)

for any r ∈ �.
By using (2.17) and the first condition in (3.4), �GS can be represented as a linear

combination of the basis states

	1(E↑, E↓, J↑, J↓) =

 ∏

x∈E↑

a
†
x,↑





 ∏

x∈E↓

a
†
x,↓


 �vac. (3.6)

By using the anticommutation relations
{
cx,σ , a

†
y,τ

} = δσ,τ δx,y , we see that

a
†
x,↓a

†
x,↑cx,↑cx,↓	

(ν)
1 (E↑, E↓, J↑, J↓) =

{
	

(ν)
1 (E↑, E↓, J↑, J↓) if x ∈ E↑ ∩ E↓

0 otherwise
(3.7)

for any x ∈ E . By using (3.5) for r ∈ E we find that only the basis states satisfying E↑∩E↓ = ∅
contribute to �GS.

In this way, �GS can be written as

�GS =
∑
σ

g[σ]

(∏
x∈E

a
†
x,σ(x)

)
�vac (3.8)

where the sum is over all the spin configurations σ = (σx)x∈E on E and g[σ] is a coefficient.
By using (3.8) and the anticommutation relations

{
cuj ,σ , a

†
x,τ

} = −(ν/2)δσ,τ χ

[x ∈ E ∩ Cj ], for any x ∈ E , where χ [true] = 1, χ [false] = 0, we get

cuj ,↑cuj ,↓�GS = ν2

4

∑
α,β∈E∩Cj

s.t. α>β

∑
σ

s.t. σ(α)=↑,σ(β)=↓

× sgn[α, β](g[σ] − g[σα↔β ])


 ∏

x∈E\{α,β}
a
†
x,σ(x)


 �vac (3.9)

where we have introduced an arbitrary ordering in E to avoid double counting and the factor
sgn[α, β] comes from the exchange of fermion operators. The spin configuration σα↔β is
obtained from σ = (σα)α∈E by switching σα and σβ . Since the basis states in (3.9) are all
linearly independent, we find from the property (3.5) that

g[σ] = g[σα↔β] (3.10)

for the sites α, β which belong to E ∩ Cj . Since the entire lattice is connected, (3.10) ensures
that the lowest energy is unique in each sector with a fixed S

(3)
tot . Therefore, �1↑ is the unique

ground state apart from the degeneracy for rotational invariance. This completes the proof of
theorem 2.1.

3.2. Proof of theorem 2.2

We treat the case with Ne = |E|+ |J | and s ′ = 0 and prove theorem 2.2. By using �2↑ instead
of �1↑, we find that the conditions (3.4) and (3.5) are still valid. By using (2.17) and the first
condition in (3.4), we find that an arbitrary ground state �GS can be represented as a linear
combination of the basis states

	2(E↑, E↓, J↑, J↓) =

 ∏

x∈E↑

a
†
x,↑





 ∏

x∈E↓

a
†
x,↓





∏

j∈J↑

d
†
j,↑





∏

j∈J↓

d
†
j,↓


 �vac. (3.11)
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As before, (3.5) and (3.7) imply that only the basis states with E↑ ∩E↓ = ∅ contribute to �GS.
We will also prove that the basis states should satisfy J↑∩J↓ = ∅ in order to contribute to �GS.
In other words, d states cannot be doubly occupied in a ground state. We prove theorem 2.2
assuming this claim.

From (3.11) and the above-mentioned constraints, we have

�GS =
∑
σ

g[σ]

(∏
x∈E

a
†
x,σ(x)

)
∏

j∈J
d
†
j,σ(uj )


 �vac (3.12)

where the sum is over all the spin configurations σ = (σr)r∈E∪J and g[σ] is a coefficient.
Here, for notational simplicity, we identified the index set J with the set of sites {uj }j∈J .

By using (3.12) and the anticommutation relations
{
cuj ,σ , a

†
x,τ

} = −(ν/2)δσ,τ χ [x ∈
E ∩ Cj ],

{
cuj ,σ , d

†
k,τ

} = δσ,τ χ [uk ∈ Cj ] for any x ∈ E, j, k ∈ J , we get

cuj ,↑cuj ,↓�GS = ν2

4

∑
α,β∈E∩Cj

s.t. α>β

∑
σ

s.t. σα=↑
σβ=↓

sgn(α, β)(g[σ] − g[σα↔β])

×

 ∏

x∈E\{α,β}
a
†
x,σ(x)





∏

j∈J
d
†
j,σ(uj )


 �vac

− ν

2

∑
α∈E∩Cj

β=uj

∑
σ

s.t. σα=↑
σβ=↓

sgn(α, β)(g[σ] − g[σα↔β ])

×

 ∏

x∈E\{α}
a
†
x,σ(x)





 ∏

k∈J \{j}
d
†
k,σ(uk)


 �vac. (3.13)

Since this quantity vanishes for all j ∈ J , we finally find that

g[σ] = g[σα↔β]. (3.14)

Since the entire lattice is connected, (3.14) ensures that the lowest energy state is unique
in each sector with a fixed S

(3)
tot . Therefore, �2↑ is the unique ground state apart from the

degeneracy for rotational invariance. This completes the proof of theorem 2.2.
It remains to prove that d states cannot be doubly occupied. Since a states cannot be

doubly occupied, the ground state can be expanded in the basis states (3.11) as

�GS =
∑

E↑,E↓,J↑,J↓
E↑∩E↓=∅

f (E↑, E↓, J↑, J↓)	2(E↑, E↓, J↑, J↓). (3.15)

Let uj and vj be the internal sites which belong to a cell Cj . By using (3.15) and
the anticommutation relations

{
cuj ,σ , a

†
x,τ

} = −(ν/2)δσ,τ χ [x ∈ E ∩ Cj ],
{
cuj ,σ , d

†
k,τ

} =
δσ,τ χ [uk ∈ Cj ],

{
cvj ,σ , d

†
k,τ

} = −δσ,τ χ [uk ∈ Cj ] for any x ∈ E, j, k ∈ J , we get

cγj ,↑cγj ,↓�GS = ν2

4

∑
x,y∈Cj

∑
E↑,E↓,J↑,J↓

s.t. x∈E↑,y∈E↓
E↑∩E↓=∅

f (E↑, E↓, J↑, J↓)sgn(x, y)	2(E↑\{x}, E↓\{y}, J↑, J↓)
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∓ ν

2

∑
x∈Cj

∑
E↑,E↓,J↑,J↓

s.t. x∈E↑
E↑∩E↓=∅

f (E↑, E↓, J↑, J↓)sgn(x, uj )	2(E↑\{x}, E↓, J↑, J↓\{j})

∓ ν

2

∑
y∈Cj

∑
E↑,E↓,J↑,J↓

s.t. y∈E↓
E↑∩E↓=∅

f (E↑, E↓, J↑, J↓)sgn(uj , y)	2(E↑, E↓\{y}, J↑\{j}, J↓)

+
∑

E↑,E↓,J↑,J↓
s.t. E↑∩E↓=∅
j∈J↑,j∈J↓

f (E↑, E↓, J↑, J↓)sgn(uj , uj )	2(E↑, E↓, J↑\{j}, J↓\{j})

(3.16)

where ∓ is − for γ = u and + for γ = v and sgn(x, y) depends on the sites x, y and
E↑, E↓, J↑, J↓.

These quantities vanish for all j ∈ J because of (3.5). By adding these two relations thus
obtained, we find that∑
E↑,E↓,J↑,J↓
s.t. E↑∩E↓=∅
j∈J↑,j∈J↓

f (E↑, E↓, J↑, J↓)sgn(uj , uj )	2(E↑, E↓, J↑\{j}, J↓\{j})

+
ν2

4

∑
x,y∈Cj

∑
E↑,E↓,J↑,J↓

s.t. x∈E↑,y∈E↓
E↑∩E↓=∅

f (E↑, E↓, J↑, J↓)

× sgn(x, y)	2(E↑\{x}, E↓\{y}, J↑, J↓) = 0. (3.17)

The linear independence of 	2 implies that each coefficient of 	2 in (3.17) is vanishing.
This means that

f (E↑, E↓, J↑, J↓)sgn(uj , uj )

= − ν2

4

∑
x,y∈Cj

∑
E′

↑,E′
↓,J ′

↑,J ′
↓

E′
↑∩E′

↓=∅
s.t. {E′

↑\{x},E′
↓\{y},J ′

↑,J ′
↓}

={E↑,E↓,J↑\{j},J↓\{j}}

f (E′
↑, E′

↓, J ′
↑, J ′

↓)sgn(x, y) (3.18)

for any E↑, E↓ ⊂ E and J↑, J↓ ⊂ J with E↑ ∩E↓ = ∅. Note that the two electrons occupying
the same d state in {E↑, E↓, J↑, J↓} are removed and added to E in the new configuration
{E′

↑, E′
↓, J ′

↑, J ′
↓}.

Now suppose that the d state is doubly occupied in r different cells. More precisely
we assume that there is a configuration {E↑, E↓, J↑, J↓} with f (E↑, E↓, J↑, J↓) �= 0 such
that |J↑ ∩ J↓| = r . We use relation (3.18) to this configuration by setting j ∈ J↑ ∩ J↓.
Then one finds that the summation on the right-hand side of (3.18) is over configurations
{E′

↑, E′
↓, J ′

↑, J ′
↓} where the d state in Cj is not occupied and there are two more occupied

a states compared with the original configuration. Thus {E′
↑, E′

↓, J ′
↑, J ′

↓} has (r − 1) cells
with doubly occupied d states and at least one cell with the empty d state. Because of (3.18),
there is at least one such configuration with nonvanishing f (E′

↑, E′
↓, J ′

↑, J ′
↓). Repeating the

argument r times, one concludes that there is at least one configuration {E′
↑, E′

↓, J ′
↑, J ′

↓} with
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(a) (b) (c)

Figure 3. Exchange mechanisms in the one-dimensional models. (a) An almost localized state
for electrons in the lowest flat band (a state). (b) In the case of theorem 2.1, overlap of two
states almost localized at neighbouring external sites generates ferromagnetism just as in Tasaki’s
flat-band model. (c) In the case of theorem 2.2, the exchange interaction also involves a state
localized at two internal sites.

f (E′
↑, E′

↓, J ′
↑, J ′

↓) �= 0 which has no cells with doubly occupied d states and at least r cells
with no d states. But this is a contradiction since the maximum possible electron number for
such a configuration is |E| + |J | − r < |E| + |J | = Ne. This proves the desired claim that r is
always 0.

4. Discussions

Let us make two remarks about our model.
First we discuss the mechanisms that generate ferromagnetism in the present and Tasaki’s

models. In Tasaki’s models, electrons in the lowest flat band may be regarded (in the basis
corresponding to the a operators) as almost localized at external sites. Roughly speaking, a
small overlap of the wavefunctions at an internal site generates ‘exchange interaction’ which
leads to ferromagnetism as in figure 3(a). In the situation of theorem 2.1, the scenario is
almost the same in our models. The electrons are almost localized at external sites and overlap
at intermediate sites as in figure 3(b). In the situation of theorem 2.2, however, the scenario
is essentially different from that in Tasaki’s model. Each electron in the lowest flat bands is
either almost localized at an external site or localized at a pair of internal sites. The basic
‘exchange interaction’ involves three electrons as in figure 3(c). This is why the proof of
theorem 2.2 required a new technique.

Secondly let us discuss the possibility of further extending Tasaki’s construction. A
natural question is whether one can treat models with three or more internal sites. As for
results corresponding to theorem 2.1, it is obvious that our proof (and Tasaki’s original proof)
automatically extends to such models. But results corresponding to theorem 2.2, which
involves a new exchange mechanism, are much more delicate. We suspect that a new idea is
required to cover the general cases.
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